8. Differentiation

• Derivatives

• Suppose f is a real-valued function and a is a point in its domain of definition. The derivative of f at a [denoted by f'(a)] is defined as

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
, provided the limit exists.

Derivative of f(x) at a is denoted by f'(a).

• Suppose f is a real-valued function. The derivative of f {denoted by f'(x) or $\frac{d}{dx}[f(x)]$ } is defined as

$$\frac{d}{dx}[f(x)] = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
, provided the limit exists.

This definition of derivative is called the first principle of derivative.

Example: Find the derivative of $f(x) = x^2 + 2x$ using first principle of derivative. **Solution:** We know that $f'(x) = h \to 0$

Solution: We know that
$$f'(x) = h \to 0$$
 h

$$\therefore f'(x) = \lim_{h \to 0} \frac{(x+h) + 2(x+h) - (x^2 + 2x)}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + h^2 + 2hx + 2x + 2h - x^2 - 2x}{h}$$

$$= \lim_{h \to 0} \frac{h^2 + 2hx + 2h}{h}$$

$$= \lim_{h \to 0} (h + 2x + 2)$$

= 0 + 2x + 2 = 2x + 2
$$f'(x) = 2x + 2$$

• Derivatives of Polynomial Functions

For the functions u and v (provided u' and v' are defined in a common domain),

$$(u \pm v)' = u' \pm v'$$

$$(uv)' = u'v + uv'$$

$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$$
(Quotient rule)

• Derivatives of Trigonometric Functions

$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 for any positive integer n

$$\frac{d}{dx}\left(a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0\right) = na_nx^{n-1} + \left(n-1\right)a_{n-1}x^{n-1} + \dots + a_1$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

Example: Find the derivative of the function $f(x) = (3x^2 + 4x + 1) \cdot \tan x$

Solution: We have,

fx=3x2+4x+1.tan xDifferentiating both sides with respect to x, f'x=3x2+4x+1.ddxtan x+tan x .ddx3x2+4x+1 f'x=3x2+4x+1.sec2x+tan x6x+4f'x=3x2+4x+1.sec2x+6x+4tan x

The derivatives of exponential functions are as follows:

$$\frac{d}{dx}(e^X) = e^X$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

Mean value theorem:

If $f: [a, b] \to \mathbf{R}$ is continuous on [a, b] and differentiable on (a, b), then there exists some $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Example: Verify Mean Value Theorem for the function:

$$f(x) = 2x^2 - 17x + 30$$
 in the interval $\left[\frac{5}{2}, 6\right]$

Solution:

$$f(x) = 2x^2 - 17x + 30$$

$$f'(x) = 4x - 17$$

The function f(x) being a polynomial, is continuous on $\left[\frac{5}{2}, 6\right]$ and is differentiable on $\left(\frac{5}{2}, 6\right)$. Also, $f\left(\frac{5}{2}\right) = 2\left(\frac{5}{2}\right)^2 - 17\left(\frac{5}{2}\right) + 30 = 0$

Also,
$$f\left(\frac{5}{2}\right) = 2\left(\frac{5}{2}\right)^2 - 17\left(\frac{5}{2}\right) + 30 = 0$$

and,
$$f(6) = 2(6)^2 - 17 \times 6 + 30 = 0$$

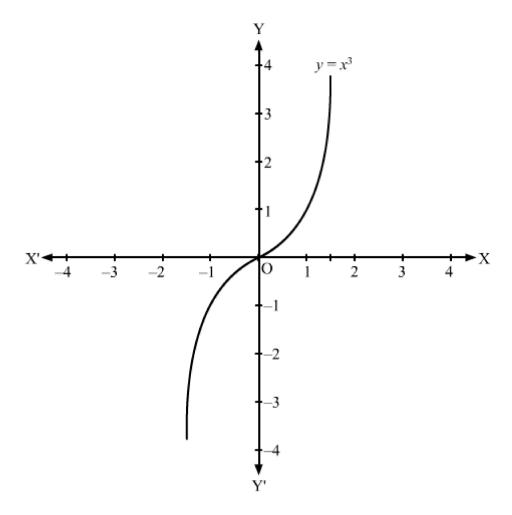
$$\therefore f\left(\frac{5}{2}\right) = f(6)$$

$$\frac{f(6) - f(\frac{5}{2})}{6 - \frac{5}{2}} = 0$$

According to Mean Value Theorem (MVT), there exists $c \in (\frac{5}{2}, 6)$ such that f(c) = 0.

∴
$$4c - 17 = 0$$

$$\Rightarrow c = \frac{17}{4} \in \left(\frac{5}{2}, 6\right)$$



Therefore, M.V.T is verified.

